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a b s t r a c t

This contribution describes the pattern recognition based data analysis of an existing industrial batch
dryer, and the comparison of three artificial intelligence techniques suited to perform classification
tasks: neural networks trained using the Levenberg–Marquardt and the Levenberg–Marquardt method
with Bayesian regularization, the neuro-fuzzy model based on clustering and grid partition, and the
Takagi–Sugeno fuzzy models. The classifiers are used to quantify the dryer batch time and its variation
during a certain production period, thus the motivation behind the work is genuine. The presented pattern
recognition method implements a supervised learning approach and is based on pressure measurement
profiles recorded by the plant data management software—the PI System from OSIsoft.

It is found that the neural networks trained with the Bayesian regularization have shown the most
robust classification performance with respect to separation threshold selection. Furthermore, it is con-

cluded that the application of artificial intelligence techniques in real chemical manufacturing facilities
is feasible and provides useful information for process performance monitoring purposes. The pattern
recognition findings presented in this paper are not case specific and can be directly used for the moni-
toring of a large variety of drying processes since the pressure profile features – vacuum check, pressure
decrease, vacuum break – do not depend on the chemicals which are dried. Since the development of the
artificial intelligent classifiers is presented in detail and step by step, this work may be interesting as a

ial fo
pattern recognition tutor

. Introduction

Plant data analysis provides the opportunity to identify opera-
ion improvement potentials. Usually the batch-to-batch variations
f parameters such as conversion, selectivity, particle size distribu-
ion, batch time are major concerns in the batch industry. In order to

aximize the production capacity and product quality it is desired
hat these variations are identified as fast as possible and action is
aken to reduce the variations. The quickest way to identify batch-
o-batch variations is to analyze the process data trends which are
ogged during plant operation.

Data recording in the process industries provides huge amount
f information which requires adequate tools to be interpreted and
nalyzed. Modern computer hardware technology together with
ntelligent software solutions make it possible today to process

he large amount of data at low cost. Some well-known analysis

ethods and tools that are used for data mining are for instance
tatistics (regression analysis, discriminant analysis, and principal
omponent analysis), time series analysis, decision trees, cluster
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analysis, neural networks, fuzzy models and neuro-fuzzy models.
These approaches are particularly useful when data are abundant
and modeling knowledge is missing. Pattern recognition is a useful
approach for interpreting the data generated by chemical and bio-
chemical processes [1,2], and involves inductive reasoning through
generalization from a set of learned examples of process behav-
ior. The number of pattern recognition applications is enormous
and the literature evaluation in this article focuses on the solu-
tions related to process engineering. These cover a wide range of
applications: dynamic disturbance classification [3,4], recognition
of chemical reactions with similar chemical end economic char-
acteristics based on an existing reaction database [5], real-time
classification of petroleum products using near-infrared spectra
[6], fault diagnosis of chemical processes [7–11]. While statistical
methods may be based on principal component analysis [12,13] and
partial least squares (PLS) [14], the black-box model based pattern
recognition methods rely on the neural networks [15], fuzzy models
[16,17], and neuro-fuzzy [18] models. From the point of view how

the data is processed these methods can be classified as supervised
[19], un-supervised [20] and semi-supervised [21]. Dynamic pro-
cess data usually are processed using the shifting temporal window
technique which is well-suited to the processing of the time series
data [13,19].

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:levente.simon@chem.ethz.ch
dx.doi.org/10.1016/j.cej.2010.01.018
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Nomenclature

List of symbols
b neural network bias
f fuzzy rule or global model output
k fuzzy rule
K number of fuzzy rules
n number of neurons in the layer
P pressure
p fuzzy model consequent parameters
w neural network weight

Greek symbols
� fuzzy set degree of membership
� ANFIS model weights
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˝ fuzzy labels
�P pressure gradient

The purpose of the article is twofold: it presents the pattern
ecognition problem and solution for an industrial batch dry-
ng process, and it provides a comparison of neural network,
akagi–Sugeno fuzzy and neuro-fuzzy artificial intelligence meth-
ds. The development of the data classifier is motivated by the
ecessity of the batch time variation quantification. While the
eural networks and the neuro-fuzzy models are established tech-
iques for pattern recognition applications, this work shows that
he Takagi–Sugeno fuzzy models may be also applicable.

The article is structured as follows: after a discussion on the
rtificial intelligence methods and applications in the process sys-
ems engineering field, a short introduction with emphasis on the
mployed techniques is given. Subsequently, the development of
he artificial intelligent decision maker systems is presented, after-
ards the classification and comparison results are discussed, and

he conclusions are drawn in the last section.

. Introduction to artificial intelligence techniques

.1. Artificial neural networks

Artificial neural networks have emerged as important tools
or non-linear data mapping. Artificial neural networks with
eed-forward structure can be used for static mapping of the
nput–output data. Process engineering related applications are
ound in the form of pattern classification applications and mod-
ling of time series using one-step ahead models. The recursive
eural networks are used to implement recursive models of time
eries data [22] and are used for model based control applica-
ions [23]. The combination of the artificial neural networks with
rst-principles models yields the hybrid models [24,25]. The most
ommon training algorithm of the neural networks is the backprop-
gation method and applications using metaheuristic optimization
ethods can be found as well. During the training of neural

etworks particular care is shown towards the generalization capa-
ility of the network. One way to ensure this is to implement the
early stopping” technique using an unseen test set. The other
ption is to add a regularization term to the objective function.
umerous applications have shown that the regularization using

he Bayesian framework [26–28] ensures good generalization fea-
ures and network training may be carried out without a validation

et. Furthermore, to avoid overfitting of the data and achieve the
est prediction ability with the simplest structure possible, pruning
lgorithms are used for topology optimization [29]. The main draw-
ack of artificial neural networks is the difficulty to understand
he meaning associated with each neuron and weight. Himmelblau
neering Journal 157 (2010) 568–578 569

presents a recent review on the application of neural networks in
chemical engineering [30].

2.2. Takagi–Sugeno fuzzy models

Non-linear process behavior can be modeled by multiple mod-
els with smooth or fuzzy transitions. The data interval is delimited
into a set of sub-regions for which a sub-model is identified. The
most wide spread fuzzy models fall into two categories depending
on the type of the consequent part. The Mamdani fuzzy model [31]
is based on IF-THEN rules with output membership functions in
the form of fuzzy sets. The second type is the Takagi–Sugeno [32]
model which is formed by IF-THEN rules with fuzzy antecedent
part and a linear function as the consequent part. This model can
be interpreted in terms of a collection of local linear models rules
of the process and provides the opportunity to introduce a priori
knowledge during process model development; e.g. a pH titration
curve may be approximated by 3 linear models with fuzzy transi-
tions; therefore, it is expected that a TS fuzzy model using 3 rules
is postulated and identified. These features are valuable for con-
trol engineers, e.g. for the pH system mentioned above one may
consider to tune 3 PI controllers with fixed P and I parameters
(valid on each operation sub-domain). The switching between the
fixed PI controllers is handled by the fuzzy system and it results
in smooth transitions of the PI controller settings between the
operation domains. During the last two decades the TS fuzzy mod-
els have found applications in many chemical engineering areas:
dynamic process modeling using first-principles Takagi–Sugeno
hybrid models [33], time series modeling: one-step ahead [34] and
recurrent TS models [35] or model based process control applica-
tions.

One approach to build fuzzy models is to express the expert
knowledge as fuzzy rules [36]. Alternatively, provided that enough
data is available, one may develop measurement based fuzzy mod-
els. The identification of the TS fuzzy models using input–output
data has two steps: structure identification and parameter esti-
mation. One way to identify the structure of a fuzzy model is
to perform input–output data clustering using: fuzzy C-means,
Gustafson–Kessel clustering and subtractive clustering. The sub-
tractive clustering method performs clustering of the input–output
space and considers the data points as potential candidates for clus-
ter centers. According to this clustering method the computation
is proportional to the number of data points and independent of
the dimension of the problem. Another option to generate fuzzy
structures is the partitioning of the input space by using grid, tree
or scatter partition. The grid partitioning method is less suited for
problems with many inputs or for cases when the input space
is not entirely populated by data. In such cases the fuzzy struc-
ture will contain fuzzy rules which do not fire, e.g. identification
of pH control related models in process engineering. Neverthe-
less, non-firing rules may be eliminated or merged using pruning
and merging procedures [37]. Furthermore, optimized fuzzy model
structures can be constructed using a genetic algorithm based
approach with variable chromosome length [38]. The next step
during the fuzzy model identification is the determination of the
optimal consequent parameters, which is posed as a linear least
square optimization problem. For more details about the different
type of fuzzy clustering, cluster merging and optimal consequent
parameter identification of the fuzzy models the reader is referred
to the referenced literature [39].
2.3. Neuro-fuzzy models

Combining the learning capabilities of the neural networks
with the knowledge representation of fuzzy logic results in
adaptive neuro-fuzzy inference systems ANFIS [40]. This system
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3.4. Data classifier calculation

The last step of the classifier development is to find a model
which connects the inputs to the output, thus to identify a black-
box model. Neural networks and Takagi–Sugeno fuzzy models
Fig. 1. Dryer pressure profile for selecte

as a five-layer network structure. Initial fuzzy structures can
e developed by input space partitioning and by input–output
pace clustering. In order to perform the supervised training
f the neuro-fuzzy systems two methods are common in prac-
ice: backpropagation based optimization of all parameters and
he hybrid method. The latter implements the backpropagation
n the antecedent parameters and later-on performs a linear
east-squares estimation of the premise parameters. Fuzzy model
tructures which were identified based on a clustering algo-
ithm may be further tuned using one of the methods mentioned
bove.

. Pattern recognition problem presentation

The aim of this work is to develop an intelligent decision maker
hich is able to analyze the measurement data of an existing indus-

rial batch dryer. This classifier is needed to quantify the dryer batch
ime and its variation during a certain production period in order
o allow the systematic analysis of the batch plant [41]. The plant
ata consist of pressure measurements without time tags which
ould indicate when a new batch is started. In order to calculate the
ime elapsed between two batches a pattern recognition algorithm
s developed using pressure data trends logged by the PI System
oftware [42]. Previous research work has shown that the pattern
ecognition using data retrieved from the PI System is more diffi-
ult [43]. The dryer pressure profile retrieved from the PI System is
resented in Fig. 1.

Throughout this work the plant data is normalized due to
onfidentiality reasons. The presented drying process is char-
cterized by two main operational stages. The first one is the
acuum check, which is performed at the beginning of each batch.
he second stage is the drying processes itself during which
he pressure has a decreasing trend; after the drying is com-
leted the pressure increases again. The aim of the data analysis

s to determine the time elapsed between two vacuum check
rocedures.

The implemented pattern recognition method uses the concept
f the temporal moving window in a simplified form. The size of
he temporal window is set to 1 measurement point thus each

easurement point is subject to a classification using the decision
aker system.

.1. Inputs and output of the classifier

It is considered that based on the information of the absolute
ressure (input 1) and its gradient (input 2) it is possible to uniquely
dentify the vacuum check stage and its pattern. These two param-
ters will constitute the input space of the pattern recognition
roblem, Fig. 2. The size of the data set on which pattern recognition
ill be performed is about 16,000 measurement points retrieved

rom the PI System.
hes; time and pressure are normalized.

3.2. Data pretreatment

This first step during the data pretreatment is the input space
data normalization between 0 and 1 for the fuzzy models and −1
and 1 for the neural networks. Data normalization is a necessary
step during black-box model development.

The second pretreatment procedure is the input data reduction.
The goal of this procedure is to ensure equal data distribution of the
input space. The importance of this operation during the develop-
ment of the Takagi–Sugeno models is also recognized by van Lith
et al. [33]. The input data reduction is performed by eliminating
data points which are closer to each other than a certain threshold
without altering the shape of the patterns. By performing this pro-
cedure the consequent part parameter estimation algorithm will
learn with equal weights all data points. Due to the input data
reduction procedure the data set was reduced to 312 measurement
points (vacuum check pattern data together with the other process
patterns).

3.3. Pattern membership labeling

The next step is to assign membership values of 1 to the mea-
surements which belong to the vacuum check pattern and value of 0
to the rest of the data, Fig. 3. The data labeling procedure introduces
the system specific a priori knowledge and allows the supervised
training of models.
Fig. 2. The input space of the pattern recognition algorithm consists of the nor-
malized absolute pressure and pressure gradient; crosses are original, circles the
reduced input data, respectively; the data in the box represents the vacuum check
pattern.
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tion and can be used for classification purposes, as will be shown
ig. 3. Normalized and reduced input–output data used for model identification.

re known as universal approximators [44–46]; therefore, it is
xpected that they are able to match the input–output space,
ssuming that a model of enough complexity is postulated. Uni-
ersal approximation theorems state that by using enough model
uilding blocks (layers, neurons in each layer, interconnectivity,
uzzy rules) these models can approximate any real continuous
on-linear function to any degree of accuracy. Thus, the challenge

s to find the simplest and most robust model, with the least num-
er of parameters, which is suited for the particular application

Occam’s razor principle). The classification performance of the

odel, ideally, should be insensitive towards the value of the classi-
cation threshold. The structures of the neural network and ANFIS
odels developed for this pattern recognition task are presented

Fig. 4. Structure of the ANFIS (a) an
neering Journal 157 (2010) 568–578 571

in Fig. 4. The TS model formulation is presented below:

Rk : if P is ˝P,k and ˝�P,k then fk = p0
k + p1

kP + p2
k �P (1)

where k is the kth fuzzy rule, P and �P are inputs, ˝P,k and ˝P�,k
are the linguistic fuzzy labels for inputs P and �P, fk is the linear
output and p0

k
, p1

k
, p2

k
are the consequent parameters associated

with each rule k, respectively. The global output of the fuzzy system
f with is the pattern membership value is the weighted average of
the individual rule k outputs:

f =
∑K

k=1fk(�k(P) ∧ �k(�P))
∑K

k=1�k(P)∧�k(�P)
(2)

where K is the number of fuzzy rules, �k is the degree of member-
ship of the antecedent of rule k and ∧ is the minimum operator.

Beside the classification application itself, this article presents
the comparison of several artificial intelligence based models, with
respect to the pattern recognition performance. The notation of
these models, the structure identification and parameter tuning
techniques are summarized in Table 1.

In order to analyze the structure size related classification per-
formance we consider two classes of structures (large and small),
as presented in Tables 2 and 3. The identified classifiers corre-
sponding to the “large” models are presented in Fig. 5 where it is
concluded that the models were able to capture enough informa-
later. The models show spurious behavior in the range where data
is not present—low pressure and low pressure gradient. The model-
ing residuals for the “large” models are presented in Fig. 6, in which
it is observed that for all models the residuals’ patterns are similar.

d neural network models (b).
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Table 1
The artificial intelligence models.

Model type Takagi–Sugeno
fuzzy

Neuro-fuzzy (ANFIS) Neural network

Model name clustTS gridANFIShyb clustANFIShyb NNlm NNbr

Structure identification
and parameter tuning
method

Subtractive
clustering and
linear least squares

Grid partitioning with
backpropagation and linear
least squares (hybrid)

Subtractive clustering and
linear least squares followed
by backpropagation and linear
least squares (hybrid)

Levenberg–Marquardt Levenberg–Marquardt
with Bayesian
regularization

Table 2
Specifications of the “large” models.

Model # membership functions for inputs # rules or neurons # parameters RMSE

P �P

clustTS 8 8 8 72 0.178
gridANFIShyb 3 2 6 33 0.159
clustANFIShyb 5 5 5 45 0.166
NNbr – – 8 33 0.131
NNlm – – 8 33 0.109

Table 3
Specifications of the “small” models.

Model # membership functions for input # rules or neurons # parameters RMSE

P �P

clustTS 5 5 5 45 0.278
gridANFIShyb 2 2 4 24 0.234
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clustANFIShyb 4 4
NNbr – –
NNlm – –

round the normalized pressure values of 0.3 and 0.8 the predicted
embership shows significant deviation. The same large deviations

re noticed also in the case of the pressure gradient variable. The
Nlm model was able to match best the data, this is reflected by

he RMSE value presented in Table 2.

.5. The classification procedure

After the development of the classifiers the entire plant data,
efore input data reduction, was subjected to classification with
he calculated models. Most of the data was classified as belonging
r not to the vacuum check profile with output 1 or 0. However,
significant number of data had an output value between 0 and

. This is due to the fact, that the patterns were not defined with
erfect accuracy and due to data matching or modeling errors. In
rder to assign the points with an intermediate membership values
o one of the patterns, usually a threshold value is chosen [19]. All
he data above the threshold were assigned to the vacuum check,
nd the data below to another process operation pattern. The mem-
ership of each data point to the vacuum check pattern calculated
y the proposed classifiers is presented in Fig. 7. It is observed that
he classification is successful in the sense that most of the data is
learly segregated into two classes. However, the segregation for
he NNlm “large” model is less obvious and the selection of the sep-
ration threshold is more difficult. The value of the threshold may
ignificantly influence the classification results, as discussed in the
ext part of the paper.
. Results and discussion

This section of the paper is composed of three parts: in the
rst part the classification performances of the “large” and “small”
odels are assessed, in the second part the different type of black-
4 36 0.183
6 25 0.146
6 25 0.128

box models are compared with respect to the root-mean square
error (RMSE) value and classification performance. The RMSE value
shows discrepancy between the classifier model and plant data.
The comparison is focused on the model structure, model size,
identification/training algorithm, and on the data classification
threshold. The last part of this section deals with the classification
performance analysis of several neural networks trained using the
Bayesian regularization framework.

4.1. Classification performance

The classification performance for the “large” and “small” mod-
els is presented in Table 4. In order to evaluate the classifiers there
were two criteria: the number of batches not found and the num-
ber of false alarms for the recognized batches. Furthermore, the
influence of the separation threshold on the classification perfor-
mance is also presented. These results show that the “large” models
have better performance and the classification is less dependent on
the separation threshold. Assuming the same separation threshold
most of the models have shown similar pattern recognition per-
formance with the exception of “large” NNlm and “small” clustTS
models.

4.2. Structure size

In this analysis, by the size of the structure we understand the
number of the tunable parameters. The classification results pre-
sented in Fig. 8 and Table 4 show that the “large” models were

able to perform good classification. The only exception is the NNlm
model using the threshold value of 0.6, which performs poorly. The
analysis of the “small” model results shows that the classification
performance is completely deteriorated for all models, except the
NNbr for both threshold values. By comparing the performance of
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Fig. 5. “Large” classification models (su

he “large” and “small” models we can clearly recognize that the

Nbr shows the most robust performance with regard to the model
ize. Moreover, the classification performance of the NNbr model
s robust against the value of the separation threshold as well. In
igs. 8 and 9 it is presented that the process upset (lowest figure)
ould not be classified correctly by any of the models. This obser-

able 4
lassification performance of the models in function of structure complexity and separat

Model clustTS gridANFIShyb

Separation threshold 0.6 0.8 0.6 0.8

Large model
Batch not found 1 1 1 2
False alarm 1 1 3 1

Small model
Batch not found 2 24 1 4
False alarm 1 1 9 1
) and the normalized plant data (dots).

vation leads us to believe that this faulty pattern was erroneously

included in the set of vacuum check patterns. Another interesting
event can be observed with two batches before this faulty event.
For this particular batch vacuum check was not carried out and
the reason is unknown since the vacuum check is an automated
procedure.

ion threshold.

clustANFIShyb NNbr NNlm

0.6 0.8 0.6 0.8 0.6 0.8

1 2 1 2 1 2
3 1 2 1 15 5

1 5 1 1 1 0
2 1 2 1 10 1
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Fig. 6. Modeling residuals co

.3. Structure type, parameter tuning method

For the “large” set of models presented in Table 4 it is concluded

hat the “large” clustTS model needed the most parameters in order
o capture the non-linearity. Note that the “large” clustANFIShyb

odel (5 rules with 45 parameters) compared to the “large” clustTS
odel (8 rules with 72 parameters) has resulted in a better training

Fig. 7. Calculated pattern membership values using the “large” m
nding to the “large” models.

error. Hence, it is concluded that the clustering based models can be
significantly further improved using the hybrid optimization pro-
posed within the ANFIS framework. The same observation is valid

if the “large” clustANFIShyb model is compared with the “small”
clustTS model. The “large” gridANFIShyb shows similar modeling
and classification performance compared to the “large” clustAN-
FIShyb model; however, it has less parameters (33 instead of 45).

odels; dashed lines show the separation threshold at 0.8.
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ig. 8. Vacuum check pattern recognition results using the “large” models with 0.8
acuum check patterns ((�) clustTS, (�) clustANFIShyb, (�) gridANFIShyb, (*) NNbr an

or this application the grid partitioning based fuzzy structure iden-
ification is applicable since the input space is populated almost
ntirely by data.

The comparison between the NNbr and NNlm “large” models
these have the same number of parameters) shows that the NNlm

atches best the data; however, its classification performance
s the poorest and depends strongly on the separation threshold
alue. This result is not surprising, since it is known that the train-
ng process has to be controlled in order to avoid data overfitting.
n this application the overfitting resulted in an increased number
f false alarms. In contrast to this behavior, the NNbr model trained
sing the Bayesian regularization achieved good classification per-
ormance; note that no test set is used during the training.

According to the analysis of the classification results for the
small” model, it is concluded that in spite of the high RMSE value,
he clustTS model is able to perform good classification, Table 4.
owever, the performance is not robust against the classification

hreshold and it depends strongly on it. Furthermore, it is observed
hat the performance of the gridANFIShyb and clustANFIShyb has
eteriorated. Compared to the “large” NNlm model, the “small” one
hows better performance for the threshold value of 0.8, however
t is very sensitive towards it. The RMSE value of the “small” NNlm
as increased compared to the “large” NNlm model; this fact can be
xplained by the lower number of tunable parameters and implic-
tly the lower structure flexibility. Note that for the threshold value

.6 the NNlm model shows lower number of false alarms when the
verfitting has decreased. The NNbr model provides the best classi-
cation performance among all “small” models and its classification
erformance is not sensitive towards the threshold value. The same
onclusion is valid for the “large” NNbr model.

ig. 9. Vacuum check pattern recognition results using the “small” models with 0.8 separ
acuum check patterns ((�) clustTS, (�) clustANFIShyb, (�) gridANFIShyb, (*) NNbr and (�)
ation threshold: lines are the pressure profiles and the markers are the recognized
NNlm).

The performance of the models used in engineering applications
can be directly correlated to a certain data matching index, such as
the RMSE. However, in the case of this pattern recognition appli-
cation it is rather difficult to link the RMSE value directly to the
classification performance of the models; this is due to the classi-
fication performance dependence on the separation threshold.

4.4. Robustness of the NNbr models

In order to examine the robustness of the NNbr model with
regard to structure complexity given by the number of parame-
ters, several NNbr structures for 0.6 and 0.8 separation threshold
values were tested as presented in Table 5.

The results show that the RMSE reaches a plateau and it is not
dependent anymore on the structure size. In Fig. 10 the pattern
recognition results using separation threshold 0.8 are presented
and it is observed that the process upset was erroneously classified
by all NNbr models.

Furthermore, it is concluded that the classification performance
does not change with the growing structure size and it does not sig-
nificantly dependent on the separation threshold, hence the NNbr
networks deliver robust performance.

It is interesting to compare the worst performing classifier, the
“large” NNlm model (RMSE: 0.109, 8 neurons, 33 parameters) with
the NNbr model having similar modeling error (RMSE: 0.113, 16

neurons, 65 parameters). The comparison is presented in Fig. 11
as the contour plot of the distance between the two models. It is
observed that these differ mostly in the regions where data is not
available (left corner) with a difference as large as 0.6. By compar-
ing the NNbr models with 14 (57 parameters, RMSE: 0.107) and 20

ation threshold: lines are the pressure profiles and the markers are the recognized
NNlm).



576 L.L. Simon, K. Hungerbuhler / Chemical Engineering Journal 157 (2010) 568–578

F – 0.8 s
n rons,

n
F
t
p
m
o

F
i

ig. 10. Vacuum check pattern recognition results using the NNbr neural networks
eurons, (×) 12 neurons, (�) 14 neurons, (�) 16 neurons, (�) 18 neurons, (�) 20 neu

eurons (81 parameters, RMSE: 0.105), both trained for 100 epochs,
ig. 12, it is observed that the models are more similar compared

o the previous case. Furthermore, it is concluded that the inter-
olation capabilities of these two models are similar, although the
odel complexity is significantly different—difference of 6 neurons

r 24 tuning parameters.

ig. 11. Contour plot of the distance between the “large” NNlm model (8 neurons) and the
nput data.

Fig. 12. Contour plot of the distance between the NNbr models with 14 and 20 ne
eparation threshold and 100 training epochs – ((�) 6 neurons, (+) 8 neurons, (*) 10
(�) 22 neurons and (�) 24 neurons).

Finally, it is concluded that any of the presented models are
suited for classification purposes. However, these are not equally

robust against the separation threshold. In the case of the clustTS,
gridANFIShyb and clustANFIShyb models the sensitivity towards the
separation threshold decreases as the RMSE value decreases. This
is not valid for the NNlm model which tends to overfit the data,

NNbr model (16 neurons), Table 5; both models trained for 100 epochs; dots show

urons, Table 5; both models trained for 100 epochs; dots show input data.
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provided that the neural network structure is complex enough.
The best performer among the modeling techniques presented in
this work is the NNbr model. Its performance is not affected by the
structure size, nor by the classification threshold.

4.5. Discussion on the on-line pattern recognition

The on-line implementation of pattern recognition technologies
may generate more value than the off-line applications, since the
information is processed more frequently and corrective action can
be promptly taken. For this case study, it was shown that it is fea-
sible to calculate the batch times on-line (as these are completed)
[47]. Usually, on-line systems (process controllers, estimators, clas-
sifiers) are retrained as soon as new measurement data is available,
thus the models are regularly maintained. However, in case that the
process patterns do not significantly change in time model retuning
may not be necessary. For this case study, it was found that good
pattern recognition is feasible even without retraining the model
periodically, hence the maintenance costs of this classification sys-
tem are minimal. One can eliminate the delay in plant data analysis
by using an on-line decision making system, thus the number of
off-spec batches can be minimized and productivity maximized.

5. Conclusions

In this contribution the development of an artificial intelligent
decision maker using plant data from the PI System data was pre-
sented. The developed classifier was used to perform the pressure
profile analysis of an industrial batch dryer. Using this classification
system it was feasible to quantify the variation in drying time (batch
time) which amounts to an average of 43% compared to the mini-
mum drying time; it was a priori known that all the batches were
operated with the same amount of material. According to these
findings it is concluded that if the variation would be reduced by
50% (by technical, organizational or personnel measures), then a
plant productivity improvement of 15% could be achieved. This is
particularly important because the dryer is the productivity bottle-
neck in this batch plant.

While neural networks and neuro-fuzzy models are established
techniques for pattern recognition applications, the Takagi–Sugeno
fuzzy models were also successfully applied. Furthermore, it was
found that by selecting the right separation threshold all models
may perform similarly well. Additionally, the assumption that any
of these models would suit the pattern recognition purpose has
been confirmed. In this study the neural networks trained with
the Bayesian regularization have shown the most robust classifica-
tion performance. The performance of these neural networks was
marginally influenced by the network size and data classification
threshold. Moreover, these networks exhibit similar interpolation
characteristics, although the number of neurons may be signifi-
cantly different.

In this work it was shown that the main patterns can be captured
already with low complexity models using minimal number of
parameters, and depending on the requirements, increased model
complexity can improve the pattern recognition performance and
the robustness. The development of the pattern recognition sys-
tems is a complex and iterative procedure. The classification results
are influenced by the preprocessing step, e.g. data reduction, nor-
malization, by the classifier structure (model type) and complexity
(number of tuning parameters), and last but not least by the train-

ing algorithm. The drawback of these pattern recognition systems
is that they are problem specific. In order to use these for new clas-
sification tasks the decision maker models have to be redesigned
and retrained. The findings presented in this paper are not case spe-
cific and can be directly used for the monitoring of a large variety
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f drying processes since the pressure profile features – vacuum
heck, pressure decrease, vacuum break – do not depend on the
hemicals which are dried.

In the context of process analytical technologies (PAT) emerging
elds of application of the artificial intelligence methods are for the
igital image processing tasks [48,49].
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